API Reference - Models - ReinforcementLearningBaseModel
ReinforcementLearningBaseModel is a base class for reinforcement learning neural network models.
Constructors
new()
Creates a new base model object. If any of the arguments are nil, default argument values for that argument will be used.
ReinforcementLearningBaseModel.new(discountFactor: number): ModelObject
Parameters:
- discountFactor: The higher the value, the more likely it focuses on long-term outcomes. The value must be set between 0 and 1.
Returns:
- ModelObject: The generated model object.
Functions
setParameters()
Set model’s parameters. When any of the arguments are nil, previous argument values for that argument will be used.
ReinforcementLearningBaseModel:setParameters(discountFactor: number)
setModel()
Sets the model.
ReinforcementLearningBaseModel:setModel(Model: ModelObject)
Parameters:
- Model: The model to be used.
getModel()
Gets the model.
ReinforcementLearningBaseModel:getModel(): ModelObject
Returns:
- Model: The model that was set.
setCategoricalUpdateFunction()
Sets the model’s categorical policy update function.
ReinforcementLearningBaseModel:setCategoricalUpdateFunction(categoricalUpdateFunction)
Parameters:
- categoricalUpdateFunction: The function to run when categoricalUpdate() is called.
setDiagonalGaussianUpdateFunction()
Sets the model’s diagonal Gausian policy update function.
ReinforcementLearningBaseModel:setDiagonalGaussianUpdateFunction(diagonalGaussianUpdateFunction)
Parameters:
- diagonalGaussianUpdateFunction: The function to run when diagonalGaussianUpdate() is called.
setEpisodeUpdateFunction()
Sets the model’s episode update function.
ReinforcementLearningBaseModel:setEpisodeUpdateFunction(episodeUpdateFunction)
Parameters:
- episodeUpdateFunction: The function to run when episodeUpdate() is called.
categoricalUpdate()
Updates the model parameters using categoricalUpdateFunction().
ReinforcementLearningBaseModel:categoricalUpdate(previousFeatureVector: featureVector, action: number/string, rewardValue: number, currentFeatureVector: featureVector)
Parameters:
-
previousFeatureVector: The previous state of the environment.
-
action: The action selected.
-
rewardValue: The reward gained at current state.
-
currentFeatureVector: The currrent state of the environment.
diagonalGaussianUpdate()
Updates the model parameters using diagonalGaussianUpdateFunction().
ReinforcementLearningBaseModel:diagonalGaussianUpdate(previousFeatureVector: featureVector, actionMeanVector: vector, actionStandardDeviationVector, rewardValue: number, currentFeatureVector: featureVector)
Parameters:
-
previousFeatureVector: The previous state of the environment.
-
actionMeanVector: The vector containing mean values for all actions.
-
actionStandardDeviationVector: The vector containing standard deviation values for all actions.
-
rewardValue: The reward gained at current state.
-
currentFeatureVector: The currrent state of the environment.
episodeUpdate()
Updates the model parameters using episodeUpdateFunction().
ReinforcementLearningBaseModel:episodeUpdate()
setResetFunction()
Sets a new function on reset alongside with the current reset() function.
ReinforcementLearningBaseModel:setResetFunction(resetFunction)
Parameters:
- resetFunction: The function to run when reset() is called.
reset()
Reset model’s stored values (excluding the parameters).
ReinforcementLearningBaseModel:reset()