DataPredict

API Reference - Models - ReinforcementLearningActorCriticBaseModel

ReinforcementLearningActorCriticBaseModel is a base class for reinforcement learning neural network models.

Constructors

new()

Creates a new base model object. If any of the arguments are nil, default argument values for that argument will be used.

ReinforcementLearningActorCriticBaseModel.new(discountFactor: number): ModelObject

Parameters:

Returns:

Functions

setParameters()

Set model’s parameters. When any of the arguments are nil, previous argument values for that argument will be used.

ReinforcementLearningActorCriticBaseModel:setParameters(discountFactor: number)

Parameters:

setActorModel()

Sets the actor model. The outputs of the actor model is required to be in normal distribution format.

ReinforcementLearningActorCriticBaseModel:setActorModel(Model: ModelObject)

Parameters:

setCriticModel()

Sets the critic model.

ReinforcementLearningActorCriticBaseModel:setCriticModel(Model: ModelObject)

Parameters:

getActorModel()

Gets the actor model.

ReinforcementLearningActorCriticBaseModel:getActorModel(): ModelObject

Returns:

getCriticModel()

Gets the critic model.

ReinforcementLearningActorCriticBaseModel:getCriticModel(): ModelObject

Returns:

setCategoricalUpdateFunction()

Sets the model’s categorical policy update function.

ReinforcementLearningBaseModel:setCategoricalUpdateFunction(categoricalUpdateFunction)

Parameters:

setDiagonalGaussianUpdateFunction()

Sets the model’s diagonal Gausian policy update function.

ReinforcementLearningBaseModel:setDiagonalGaussianUpdateFunction(diagonalGaussianUpdateFunction)

Parameters:

setEpisodeUpdateFunction()

Sets the model’s episode update function.

ReinforcementLearningActorCriticBaseModel:setEpisodeUpdateFunction(episodeUpdateFunction)

Parameters:

categoricalUpdate()

Updates the model parameters using categoricalUpdateFunction().

ReinforcementLearningBaseModel:categoricalUpdate(previousFeatureVector: featureVector, action: number/string, rewardValue: number, currentFeatureVector: featureVector)

Parameters:

diagonalGaussianUpdate()

Updates the model parameters using diagonalGaussianUpdateFunction().

ReinforcementLearningActorCriticBaseModel:diagonalGaussianUpdate(previousFeatureVector: featureVector, actionMeanVector: vector, actionStandardDeviationVector, rewardValue: number, currentFeatureVector: featureVector)

Parameters:

episodeUpdate()

Updates the model parameters using episodeUpdateFunction().

ReinforcementLearningActorCriticBaseModel:episodeUpdate()

setResetFunction()

Sets a new function on reset alongside with the current reset() function.

ReinforcementLearningActorCriticBaseModel:setResetFunction(resetFunction)

Parameters:

reset()

Reset model’s stored values (excluding the parameters).

ReinforcementLearningActorCriticBaseModel:reset()