NormalLinearRegression is a supervised machine learning model that predicts continuous values (e.g. 1.2, -32, 90, -1.2 and etc. ). It uses matrix calculations to find the best model parameters.
Contains a matrix.
Create new model object. If any of the arguments are nil, default argument values for that argument will be used.
NormalLinearRegression.new(): ModelObject
Train the model.
NormalLinearRegression:train(featureMatrix: Matrix, labelVector: Matrix)
featureMatrix: Matrix containing all data.
labelVector: A (n x 1) matrix containing values related to featureMatrix.
Predict the value for a given data.
NormalLinearRegression:predict(featureMatrix: Matrix): number