DataPredict

API Reference - Models - NormalLinearRegression

NormalLinearRegression is a supervised machine learning model that predicts continuous values (e.g. 1.2, -32, 90, -1.2 and etc. ). It uses matrix calculations to find the best model parameters.

Stored Model Parameters

Contains a matrix.

Constructors

new()

Create new model object. If any of the arguments are nil, default argument values for that argument will be used.

NormalLinearRegression.new(): ModelObject

Returns:

Functions

train()

Train the model.

NormalLinearRegression:train(featureMatrix: Matrix, labelVector: Matrix)

Parameters:

predict()

Predict the value for a given data.

NormalLinearRegression:predict(featureMatrix: Matrix): number

Parameters:

Returns:

Inherited From