API Reference - Models - NaiveBayes
NaiveBayes is an supervised machine learning model that predicts which classes that the input belongs to using probability.
Stored Model Parameters
Contains a table of matrices.
-
ModelParameters[1]: meanMatrix. The columns are the features.
-
ModelParameters[2]: standardDeviationMatrix. The columns are the features.
-
ModelParameters[3]: probabilitiesMatrix. The columns are the features.
Constructors
new()
Create new model object. If any of the arguments are nil, default argument values for that argument will be used.
NaiveBayes.new(useLogProbabilities: boolean): ModelObject
Parameters:
- useLogProbabilities: Convert the probabilities to larger values using log function.
Returns:
- ModelObject: The generated model object.
Functions
setParameters()
Set model’s parameters. When any of the arguments are nil, previous argument values for that argument will be used.
NaiveBayes:setParameters(useLogProbabilities: boolean)
Parameters:
- useLogProbabilities: Convert the probabilities to larger values using log function.
train()
Train the model.
NaiveBayes:train(featureMatrix: Matrix, labelVector: Matrix)
Parameters:
-
featureMatrix: Matrix containing all data.
-
labelVector: A (n x 1) matrix containing values related to featureMatrix.
Returns:
- costArray: An array containing cost values.
predict()
Predict which cluster does it belong to for a given data.
NaiveBayes:predict(featureMatrix: Matrix, returnOriginalOutput: boolean): Matrix, Matrix -OR- Matrix
Parameters:
-
featureMatrix: Matrix containing all data.
-
returnOriginalOutput: Set whether or not to return predicted matrix instead of value with highest probability.
Returns:
-
predictedVector: A vector that is predicted by the model.
-
probabilityVector: A vector that contains the probability of predicted values in predictedVector.
-OR-
- predictedMatrix: A matrix containing all predicted values from all classes.
getClassesList()
NaiveBayes:getClassesList(): []
Returns:
- ClassesList: A list of classes. The index of the class relates to which the neuron at output layer belong to. For example, {3, 1} means that the output for 3 is at first neuron, and the output for 1 is at second neuron.
setClassesList()
NaiveBayes:setClassesList(ClassesList: [])
Parameters:
- ClassesList: A list of classes. The index of the class relates to which the neuron at output layer belong to. For example, {3, 1} means that the output for 3 is at first neuron, and the output for 1 is at second neuron.
Inherited From
Notes
- Untested. May give wrong model. Use at your own risk. (I am new at understanding this model)