API Reference - Models - LocalOutlierProbability

Stored Model Parameters

Contains a table of matrices.

  • ModelParameters: Feature Matrix

Constructors

new()

Create new model object. If any of the arguments are nil, default argument values for that argument will be used.

LocalOutlierProbability.new(kValue: integer, distanceFunction: string, use, useWeightedDistance: boolean): ModelObject

Parameters:

  • kValue: The number of closest data points taken into consideration for majority voting to determine the class of a given data point.

  • distanceFunction: The distance function to be used to measure the similarity between two data points. Available options are:

    • Euclidean

    • Manhattan

    • Cosine

Returns:

  • ModelObject: The generated model object.

Functions

train()

Train the model.

LocalOutlierProbability:train(featureMatrix: matrix): number[]

Parameters:

  • featureMatrix: Matrix containing all data.

score()

Generates the score vector.

LocalOutlierProbability:score(): matrix

Returns:

  • scoreVector: A vector containing the scores for each data stored in train() function. The higher the value, the more likely the datapoint is an outlier.

Inherited From

References


This site uses Just the Docs, a documentation theme for Jekyll.