API Reference - Models - LocalOutlierProbability

Stored Model Parameters

Contains a table of matrices.

  • ModelParameters: Feature Matrix

Constructors

new()

Create new model object. If any of the arguments are nil, default argument values for that argument will be used.

LocalOutlierProbability.new(kValue: integer, distanceFunction: string, use, useWeightedDistance: boolean): ModelObject

Parameters:

  • kValue: The number of closest data points taken into consideration for majority voting to determine the class of a given data point.

  • distanceFunction: The distance function to be used to measure the similarity between two data points. Available options are:

    • Euclidean

    • Manhattan

    • Cosine

Returns:

  • ModelObject: The generated model object.

Functions

train()

Train the model.

LocalOutlierProbability:train(featureMatrix: matrix): number[]

Parameters:

  • featureMatrix: Matrix containing all data.

score()

Generates the score vector.

LocalOutlierProbability:score(): matrix

Returns:

  • scoreVector: A vector containing the scores for each data stored in train() function.

Inherited From

References