DataPredict

API Reference - Models - ExpectationMaximization (EM)

ExpectationMaximization is an unsupervised machine learning model that estimates the probability distribution of a dataset and assigns each data point to a cluster based on its most likely probability.

Stored Model Parameters

Contains a table of matrices.

Constructors

new()

Create new model object. If any of the arguments are nil, default argument values for that argument will be used.

ExpectationMaximization.new(maximumNumberOfIterations: integer, numberOfClusters: integer, epsilon: number): ModelObject

Parameters

Returns:

Functions

setParameters()

Set model’s parameters. When any of the arguments are nil, previous argument values for that argument will be used.

ExpectationMaximization:setParameters(maximumNumberOfIterations: integer, numberOfClusters: integer, epsilon: number)

Parameters

train()

Train the model.

ExpectationMaximization:train(featureMatrix: Matrix)

Parameters:

Returns:

predict()

Predict which cluster does it belong to for a given data.

ExpectationMaximization:predict(featureMatrix: Matrix): integer, number

Parameters:

Returns:

Inherited From