DataPredict

API Reference - Models - DensityBasedSpatialClusteringOfApplicationsWithNoise (DBSCAN)

DBSCAN is an unsupervised machine learning model that clusters data points based on their spatial density and proximity to each other, using epsilon distance and minimum number of points required to form a cluster.

Stored Model Parameters

Contains a table.

Constructors

new()

Create new model object. If any of the arguments are nil, default argument values for that argument will be used.

DensityBasedSpatialClusteringOfApplicationsWithNoise.new(epsilon: number, minimumNumberOfPoints: integer, distanceFunction: string): ModelObject

Parameters:

Returns:

Functions

setParameters()

Set model’s parameters. When any of the arguments are nil, previous argument values for that argument will be used.

DensityBasedSpatialClusteringOfApplicationsWithNoise:setParameters(epsilon: number, minimumNumberOfPoints: integer, distanceFunction: string)

Parameters:

train()

Train the model.

DensityBasedSpatialClusteringOfApplicationsWithNoise:train(featureMatrix: Matrix)

Parameters:

Returns:

predict()

Predict which cluster does it belong to for a given data.

DensityBasedSpatialClusteringOfApplicationsWithNoise:predict(featureMatrix: Matrix): Matrix, Matrix

Parameters:

Returns:

Inherited From