DiagonalGaussianPolicy is a base class for setuping up reinforcement learning functions.
Create new model object. If any of the arguments are nil, default argument values for that argument will be used.
DiagonalGaussianPolicy.new(numberOfReinforcementsPerEpisode: integer): DiagonalGaussianPolicyObject
Set model’s parameters. When any of the arguments are nil, previous argument values for that argument will be used.
DiagonalGaussianPolicy:setParameters(numberOfReinforcementsPerEpisode: integer)
DiagonalGaussianPolicy:setModel(Model: ModelObject)
DiagonalGaussianPolicy:getModel(): ModelObject
Sets a new function on update alongside with the current model’s update() function.
DiagonalGaussianPolicy:extendUpdateFunction(updateFunction)
Sets a new function on episode update alongside with the current model’s episodeUpdate() function.
DiagonalGaussianPolicy:extendEpisodeUpdateFunction(episodeUpdateFunction)
Reward or punish model based on the current state of the environment.
DiagonalGaussianPolicy:reinforce(currentFeatureVector: matrix, actionStandardDeviationVector: matrix, rewardValue: number): matrix
currentFeatureVector: Matrix containing data from the current state.
actionStandardDeviationVector: The vector containing values of action’s standard deviations. The number of columns must match the number of actions.
rewardValue: The reward value added/subtracted from the current state (recommended value between -1 and 1, but can be larger than these values).
Resets the current parameters values.
DiagonalGaussianPolicy:reset()
Set whether or not to show the current number of episodes and current epsilon.
DiagonalGaussianPolicy:setPrintOutput(option: boolean)
DiagonalGaussianPolicy:getCurrentNumberOfEpisodes(): integer
DiagonalGaussianPolicy:getCurrentNumberOfReinforcements(): integer