DataPredict

API Reference - Others - WassersteinGenerativeAdversarialImitationLearning (WGAIL)

WassersteinGenerativeAdversarialImitationLearning allows an agent to learn from experts’ trajectories.

Notes

Constructors

new()

Create new model object. If any of the arguments are nil, default argument values for that argument will be used.

WassersteinGenerativeAdversarialImitationLearning.new(numberOfStepsPerEpisode: number): ModelObject

Parameters:

Returns:

Functions

setParameters()

Set model’s parameters. When any of the arguments are nil, previous argument values for that argument will be used.

WassersteinGenerativeAdversarialImitationLearning:setParameters(numberOfStepsPerEpisode: number)

Parameters:

setReinforcementLearningModel()

Sets the ReinforcementLearning into the model.

WassersteinGenerativeAdversarialImitationLearning:setReinforcementLearningModel(ReinforcementLearningModel: Model)

Parameters:

setDiscriminatorModel()

Sets the Discriminator into the model.

WassersteinGenerativeAdversarialImitationLearning:setDiscriminatorModel(DiscriminatorModel: Model)

Parameters:

getReinforcementLearningModel()

Gets the ReinforcementLearning from the model.

WassersteinGenerativeAdversarialImitationLearning:getReinforcementLearningModel(): Model

Returns:

getDiscriminatorModel()

Gets the Discriminator from the model.

WassersteinGenerativeAdversarialImitationLearning:getDiscriminatorModel(): Model

Returns:

setClassesList()

OneVsAll:setClassesList(ClassesList: [])

Parameters:

getClassesList()

OneVsAll:getClassesList(): []

Returns:

categoricalTrain()

Categorically trains the model.

WassersteinGenerativeAdversarialImitationLearning:categoricalTrain(previousFeatureMatrix: matrix, expertActionMatrix: matrix, currentFeatureMatrix: matrix)

Parameters:

diagonalGaussianTrain()

Diagonally Gaussian trains the model.

WassersteinGenerativeAdversarialImitationLearning:diagonalGaussianTrain(previousFeatureMatrix: matrix, expertActionMeanMatrix: matrix, expertStandardDeviationMatrix: matrix,currentFeatureMatrix: matrix)

Parameters:

evaluate()

Generates the output from Discriminator.

WassersteinGenerativeAdversarialImitationLearning:evaluate(featureMatrix: matrix): matrix

Parameters:

Returns:

generate()

Generates the output from Generator.

WassersteinGenerativeAdversarialImitationLearning:generate(featureMatrix: matrix, returnOriginalOutput: boolean): matrix 

Parameters:

Returns:

-OR-

References