RandomNetworkDistillation is a neural network for producing internal rewards to encourage exploration. Requires neural network as your model.
Create new model object. If any of the arguments are nil, default argument values for that argument will be used.
RandomNetworkDistillation.new(): RandomNetworkDistillationObject
RandomNetworkDistillation:generate(featureMatrix: matrix): matrix
RandomNetworkDistillation:setModel(Model: ModelObject)
RandomNetworkDistillation:setModel(): ModelObject
Gets the target model parameters from the network.
RandomNetworkDistillation:getTargetModelParameters(doNotDeepCopy: boolean): ModelParameters
Gets the predictor model parameters from the network.
RandomNetworkDistillation:getPredictorModelParameters(doNotDeepCopy: boolean): ModelParameters
Set the target model parameters to the network
RandomNetworkDistillation:setTargetModelParameters(TargetModelParameters: ModelParameters, doNotDeepCopy: boolean)
TargetModelParameters: Target network model parameters to be used for predictor network training.
doNotDeepCopy: Set whether or not to deep copy the model parameters.
Set the predictor model parameters to the network
RandomNetworkDistillation:setPredictorModelParameters(PredictorModelParameters: ModelParameters, doNotDeepCopy: boolean)
PredictorModelParameters: Predictor network model parameters to be trained so that it tries to match up with target network model parameters.
doNotDeepCopy: Set whether or not to deep copy the model parameters.