API Reference - Others - ModelSafeguardWrapper

Constructors

new()

Creates a new safeguard wrapper object. If any of the arguments are not given, default argument values for that argument will be used.

ModelSafeguardWrapper.new(Model: ModelObject): ModelSafeguardWrapperObject

Parameters:

  • Model: The model object to modify its training capabilities.

Returns:

  • TrainingModifierObject: A training modifier object that uses the model’s train(), predict() and reinforce() functions so that it behaves like a regular model.

Functions

train()

Trains the machine/deep learning model under specific gradient descent mode.

ModelSafeguardWrapper:train(...): number[]

Parameters:

  • …: The parameters are the same to the original model’s train() function.

Returns:

  • costArray: An array containing cost values.

predict()

Predict the values for given data.

ModelSafeguardWrapper:predict(...): ...

Parameters:

…: The parameters are the same to the original model’s predict() function.

Returns:

…: The outputs are the same to the original model’s predict() function.

getModelParameters()

Gets the model parameters from the base model.

ModelSafeguardWrapper:getModelParameters(doNotDeepCopy: boolean): ModelParameters

Parameters

  • doNotDeepCopy: Set whether or not to deep copy the model parameters.

Returns

  • ModelParameters: A matrix/table containing model parameters fetched from the base model.

setModelParameters()

Set the model parameters to the base model.

ModelSafeguardWrapper:setModelParameters(ModelParameters: ModelParameters, doNotDeepCopy: boolean)

Parameters

  • ModelParameters: A matrix/table containing model parameters to be given to the base model.

  • doNotDeepCopy: Set whether or not to deep copy the model parameters.

Inherited From