API Reference - Others - ModelDatasetCreator
Modifies existing dataset so that it can be used by the models.
Constructors
new()
Creates a ModelDatasetCreator object.
ModelDatasetCreator.new(): ModelDatasetCreatorObject
Functions
setDatasetSplitPercentages()
Set the split percentages for training, validation and testing. The current default values are 0.7 for training and 0.3 for testing.
ModelDatasetCreator:setDatasetSplitPercentages(trainDataPercentage: number, validationDataPercentage: number, testDataPercentage: number)
Parameters:
-
trainDataPercentage: The percentage of dataset to be turned to training data. The value must be between 0 and 1.
-
validationDataPercentage: The percentage of dataset to be turned to validation data. The value must be between 0 and 1.
-
testDataPercentage: The percentage of dataset to be turned to testing data. The value must be between 0 and 1.
setDatasetRandomizationProbability()
ModelDatasetCreator:setDatasetRandomizationProbability(datasetRandomizationProbability: number)
Parameters:
- datasetRandomizationProbability: The probability to randomize the positions of each datapoints. The higher the value, the more likely it will be randomized. The value must be between 0 and 1.
randomizeDataset()
Randomizes the each data positions in te dataset
ModelDatasetCreator:randomizeDataset(featureMatrix: matrix, labelVectorOrMatrix: matrix): matrix, matrix
Parameters:
-
featureMatrix: The matrix containing all the data.
-
labelVectorOrMatrix: The matrix containing all the label values related to feature matrix. Optional argument.
Returns:
-
randomizedFeatureMatrix: The matrix containing all the data.
-
randomizedLabelVectorOrMatrix: The matrix containing all the label values related to feature matrix. Only returns if labelVectorOrMatrix is added.
splitDataset()
Predict the values for given data.
ModelDatasetCreator:splitDataset(datasetMatrix): matrix, matrix, matrix
Parameters:
- datasetMatrix: The feature matrix or label matrix to split.
Returns:
-
trainDatasetMatrix: The dataset for training models.
-
validationDatasetMatrix: The dataset for validating models.
-
testDatasetMatrix: The dataset for testing models.