Modifies existing dataset so that it can be used by the models.
Creates a ModelDatasetCreator object.
ModelDatasetCreator.new(): ModelDatasetCreatorObject
Set the split percentages for training, validation and testing. The current default values are 0.7 for training and 0.3 for testing.
ModelDatasetCreator:setDatasetSplitPercentages(trainDataPercentage: number, validationDataPercentage: number, testDataPercentage: number)
trainDataPercentage: The percentage of dataset to be turned to training data. The value must be between 0 and 1.
validationDataPercentage: The percentage of dataset to be turned to validation data. The value must be between 0 and 1.
testDataPercentage: The percentage of dataset to be turned to testing data. The value must be between 0 and 1.
ModelDatasetCreator:setDatasetRandomizationProbability(datasetRandomizationProbability: number)
Randomizes the each data positions in te dataset
ModelDatasetCreator:randomizeDataset(featureMatrix: matrix, labelVectorOrMatrix: matrix): matrix, matrix
featureMatrix: The matrix containing all the data.
labelVectorOrMatrix: The matrix containing all the label values related to feature matrix. Optional argument.
randomizedFeatureMatrix: The matrix containing all the data.
randomizedLabelVectorOrMatrix: The matrix containing all the label values related to feature matrix. Only returns if labelVectorOrMatrix is added.
Predict the values for given data.
ModelDatasetCreator:splitDataset(datasetMatrix): matrix, matrix, matrix
trainDatasetMatrix: The dataset for training models.
validationDatasetMatrix: The dataset for validating models.
testDatasetMatrix: The dataset for testing models.