API Reference - Optimizers
Constructors
new()
Optimizer.new{CalculateFunction: function, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
CalculateFunction: The tensor that will be transformed.
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
AdaptiveGradient()
Optimizer.AdaptiveGradient{LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
Returns:
- Optimizer: The generated optimizer object.
AdaptiveGradientDelta()
Optimizer.AdaptiveGradientDelta{decayRate: number, epsilon: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
decayRate: The value that controls the rate of decay. [Default: 0.9]
-
epsilon: The value to ensure that the numbers are not divided by zero. [Default: 10^-7]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
AdaptiveMomentEstimation()
Optimizer.AdaptiveMomentEstimation{beta1: number, beta2: number, epsilon: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
beta1: The decay rate of the moving average of the first moment of the gradients. [Default: 0.9]
-
beta2: The decay rate of the moving average of the squared gradients. [Default: 0.999]
-
epsilon: The value to ensure that the numbers are not divided by zero. [Default: 10^-7]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
AdaptiveMomentEstimationMaximum()
Optimizer.AdaptiveMomentEstimationMaximum{beta1: number, beta2: number, epsilon: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
beta1: The decay rate of the moving average of the first moment of the gradients. [Default: 0.9]
-
beta2: The decay rate of the moving average of the squared gradients. [Default: 0.999]
-
epsilon: The value to ensure that the numbers are not divided by zero. [Default: 10^-7]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
Gravity()
Optimizer.Gravity{initialStepSize: number, movingAverage: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
initialStepSize: The value to set the initial velocity during the first iteration. [Default: 0.01]
-
movingAverage: The value that controls the smoothing of gradients during training. [Default: 0.9]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
Momentum()
Optimizer.Momentum{decayRate: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
decayRate: The value that controls the rate of decay. [Default: 0.9]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
NesterovAcceleratedAdaptiveMomentEstimation()
Optimizer.NesterovAcceleratedAdaptiveMomentEstimation{beta1: number, beta2: number, epsilon: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
beta1: The decay rate of the moving average of the first moment of the gradients. [Default: 0.9]
-
beta2: The decay rate of the moving average of the squared gradients. [Default: 0.999]
-
epsilon: The value to ensure that the numbers are not divided by zero. [Default: 10^-7]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
RootMeanSquarePropagation()
Optimizer.RootMeanSquarePropagation{beta: number, epsilon: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
beta: The value that controls the exponential decay rate for the moving average of squared gradients. [Default: 0.9]
-
epsilon: The value to ensure that the numbers are not divided by zero. [Default: 10^-7]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
LearningRateStepDecay()
Optimizer.LearningRateStepDecay{timeStepToDecay: number, decayRate: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
timeStepToDecay: The number of time steps to decay the learning rate. [Default: 100]
-
decayRate: The value that controls the rate of decay. [Default: 0.5]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
LearningRateTimeDecay()
Optimizer.LearningRateTimeDecay{decayRate: number, LearningRateValueScheduler: LearningRateValueScheduler, optimizerInternalParameterArray: {}}: Optimizer
Parameters:
-
decayRate: The value that controls the rate of decay. [Default: 0.5]
-
LearningRateValueScheduler: The value scheduler object to be used by the learning rate.
-
optimizerInternalParameterArray: The optimizer internal parameters that is used by the optimizer.
Returns:
- Optimizer: The generated optimizer object.
Functions
calculate()
Optimizer:calculate{learningRate: number, tensor: tensor}: tensor
Parameters:
-
learningRate: The learning rate to be used by the optimizer.
-
tensor: The tensor to be modified by the optimizer.
Returns:
- tensor: The modified tensor that is created as a result of calling this function.