API Reference - AutomaticDifferentiationTensors
Constructors
new()
AutomaticDifferentiationTensors.new{tensor: tensor, PartialFirstDerivativeFunction: function, inputTensorArray: {tensor}}: AutomaticDifferentiationTensor
Parameters:
-
tensor: The tensor that is stored inside the automatic differentiation tensor.
-
PartialFirstDerivativeFunction: The function ths is involved in creating the automatic differentiation tensor.
-
inputTensorArray: An array containing the tensors that are involved in creating the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
createTensor()
AutomaticDifferentiationTensors.createTensor{dimensionSizeArray: {number}, allValues: number}: AutomaticDifferentiationTensor
Parameters:
-
dimensionSizeArray: The dimension size array for the automatic differentiation tensor.
-
allValues: The values to be set for the automatic differentiation tensor.
createRandomNormalTensor()
AutomaticDifferentiationTensors.createRandomNormalTensor{dimensionSizeArray: {number}, mean: number, standardDeviation: number}: AutomaticDifferentiationTensor
Parameters:
-
dimensionSizeArray: The dimension size array for the automatic differentiation tensor.
-
mean: The mean for the generated values.
-
standardDeviation: The standard deviation for the generated values.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
createRandomUniformTensor()
AutomaticDifferentiationTensors.createRandomNormalTensor{dimensionSizeArray: {number}, minimumValue: number, maximumValue: number}: AutomaticDifferentiationTensor
Parameters:
-
dimensionSizeArray: The dimension size array for the automatic differentiation tensor.
-
minimumValue: The minimum value for the generated values.
-
maximumValue: The maximum value for the generated values.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
radian()
AutomaticDifferentiationTensors.radian{tensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
degree()
AutomaticDifferentiationTensors.degree{tensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
sin()
AutomaticDifferentiationTensors.sin{tensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
cos()
AutomaticDifferentiationTensors.cos{tensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
tan()
AutomaticDifferentiationTensors.tan{tensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
exponent()
AutomaticDifferentiationTensors.exponent{tensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
logarithm()
AutomaticDifferentiationTensors.logarithm{numberTensor: tensor, baseTensor: tensor}: AutomaticDifferentiationTensor
Parameters:
-
numberTensor: The number tensor that is used by the automatic differentiation tensor.
-
baseTensor: The base tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
clamp()
AutomaticDifferentiationTensors.clamp{tensor: tensor}: AutomaticDifferentiationTensor
Parameters:
-
tensor: The tensor that is used by the automatic differentiation tensor.
-
upperBondTensor: The upper bound tensor that is stored inside the automatic differentiation tensor.
-
lowerBondTensor: The lower bound tensor that is stored inside the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
maximum()
AutomaticDifferentiationTensors.maximum{...: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
minimum()
AutomaticDifferentiationTensors.minimum{...: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
add()
AutomaticDifferentiationTensors.add{...: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
subtract()
AutomaticDifferentiationTensors.subtract{...: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
multiply()
AutomaticDifferentiationTensors.multiply{...: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
divide()
AutomaticDifferentiationTensors.divide{...: tensor}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
concatenate()
AutomaticDifferentiationTensors.concatenate{...: tensor, dimension: number}: AutomaticDifferentiationTensor
Parameters:
- tensor: The tensor that is used by the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
Arithmetic Functions
findMinimumValue()
AutomaticDifferentiationTensors:findMinimumValue{}: AutomaticDifferentiationTensor
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
findMaximumValue()
AutomaticDifferentiationTensors:findMaximumValue{}: AutomaticDifferentiationTensor
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
sum()
AutomaticDifferentiationTensors:sum{dimension: number}: AutomaticDifferentiationTensor
Parameters:
- dimension: The dimension of calculating the sum along an axis. Can be empty. [Default: None]
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
unaryMinus()
AutomaticDifferentiationTensors:unaryMinus{}: AutomaticDifferentiationTensor
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
absolute()
AutomaticDifferentiationTensors:absolute{}: AutomaticDifferentiationTensor
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
power()
AutomaticDifferentiationTensors:power{otherTensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- otherTensor: The tensor to be used as an exponent.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
dotProduct()
AutomaticDifferentiationTensors:dotProduct{otherTensor: tensor}: AutomaticDifferentiationTensor
Parameters:
- otherTensor: The tensor to be used for dot product operation.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
transpose()
AutomaticDifferentiationTensors:transpose{dimensionArray: {number}}: AutomaticDifferentiationTensor
Parameters:
- dimensionArray: An array containing the dimensions to transpose the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
flatten()
AutomaticDifferentiationTensors:flatten{dimensionArray: {number}}: AutomaticDifferentiationTensor
Parameters:
- dimensionArray: An array containing the dimensions to flatten the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
reshape()
AutomaticDifferentiationTensors:reshape{dimensionSizeArray: {number}}: AutomaticDifferentiationTensor
Parameters:
- dimensionSizeArray: An array containing the dimension sizes to reshape the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
permute()
AutomaticDifferentiationTensors:permute{dimensionArray: {number}}: AutomaticDifferentiationTensor
Parameters:
- dimensionArray: An array containing the dimensions to permute the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
mean()
AutomaticDifferentiationTensors:mean{dimension: number}: AutomaticDifferentiationTensor
Parameters:
- dimension: The dimension of calculating the mean along an axis. Can be empty. [Default: None]
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
standardDeviation()
AutomaticDifferentiationTensors:standardDeviation{dimension: number}: AutomaticDifferentiationTensor
Parameters:
- dimension: The dimension of calculating the standard deviation along an axis. Can be empty. [Default: None]
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
zScoreNormalization()
AutomaticDifferentiationTensors:zScoreNormalization{dimension: number}: AutomaticDifferentiationTensor
Parameters:
- dimension: The dimension of calculating the z-score normalization along an axis. Can be empty. [Default: None]
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
expandDimensionSizes()
AutomaticDifferentiationTensors:expandDimensionSizes{targetDimensionSizeArray: {number}}: AutomaticDifferentiationTensor
Parameters:
- targetDimensionSizeArray: The target dimension sizes to add to the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
expandNumberOfDimensions()
AutomaticDifferentiationTensors:expandNumberOfDimensions{dimensionSizeToAddArray: {number}}: AutomaticDifferentiationTensor
Parameters:
- dimensionSizeToAddArray: The dimension size to add to the automatic differentiation tensor.
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
Non-Arithmetic Functions
AutomaticDifferentiationTensors:differentiate{firstDerivativeTensor: tensor}
Parameters:
- firstDerivativeTensor: The tensor to be used for calculating chain rule first derivative tensors.
copy()
AutomaticDifferentiationTensors:copy{}: AutomaticDifferentiationTensor
Returns:
- AutomaticDifferentiationTensor: The generated automatic differentiation tensor object.
getTensor()
AutomaticDifferentiationTensors:getTensor{doNotDeepCopy: boolean}: tensor
Parameters:
- doNotDeepCopy: Set whether or not to deep copy the tensor.
Returns:
- tensor: The tensor that is stored inside the automatic differentiation tensor.
setTensor()
AutomaticDifferentiationTensors:setTensor{tensor: tensor, doNotDeepCopy: boolean}
Parameters:
-
tensor: The tensor that is will be stored inside the automatic differentiation tensor.
-
doNotDeepCopy: Set whether or not to deep copy the tensor.
getTotalFirstDerivativeTensor()
AutomaticDifferentiationTensors:getTotalFirstDerivativeTensor{doNotDeepCopy: boolean}: tensor
Parameters:
- doNotDeepCopy: Set whether or not to deep copy the total first derivative tensor.
Returns:
- tensor: The total first derivative tensor that is stored inside the automatic differentiation tensor.
setTotalFirstDerivativeTensor()
AutomaticDifferentiationTensors:setTotalFirstDerivativeTensor{tensor: tensor, doNotDeepCopy: boolean}
Parameters:
-
tensor: The total first derivative tensor that is will be stored inside the automatic differentiation tensor.
-
doNotDeepCopy: Set whether or not to deep copy the total first derivative tensor.
destroy()
AutomaticDifferentiationTensors:destroy{areDescendantsDestroyed: boolean, destroyFirstInputTensor: boolean}
Parameters:
-
areDescendantsDestroyed: Set whether or not to destroy descendants of the automatic differentiation tensor.
-
destroyFirstInputTensor: Set whether or not to destroy the very first tensors that are used as inputs.
isAutomaticDifferentiationTensor()
AutomaticDifferentiationTensors:isAutomaticDifferentiationTensor{}: boolean
Returns:
- isAutomaticDifferentiationTensor: A boolean that indicates if the object is an automatic differentiation tensor object.